

Progetto Biochar Latium Conferenza conclusiva

15 marzo 2023

Il progetto EIT FOOD - Black to the Future: effetti sul suolo di diversi trattamenti ammendanti

Prof. Alessandro Buscaroli Università degli Studi di Bologna

PROGETTO COFINANZIATO DALL'UNIONE EUROPEA - POR FESR 2014-2020

Biochar Latium

Valorizzazione del biochar prodotto dal recupero di materiali legnosi di scarto derivanti da filiere del Lazio

Black To the Future (BTF) is a innovation project, co-funded by the European Institute of Innovation and Technology (EIT), European Union, to **develop and test an advanced mixture of biochar and compost called "CBmix"** with the goal to reduce soil degradation, increase carbon capture and plant yield improvement within a circular economy network.

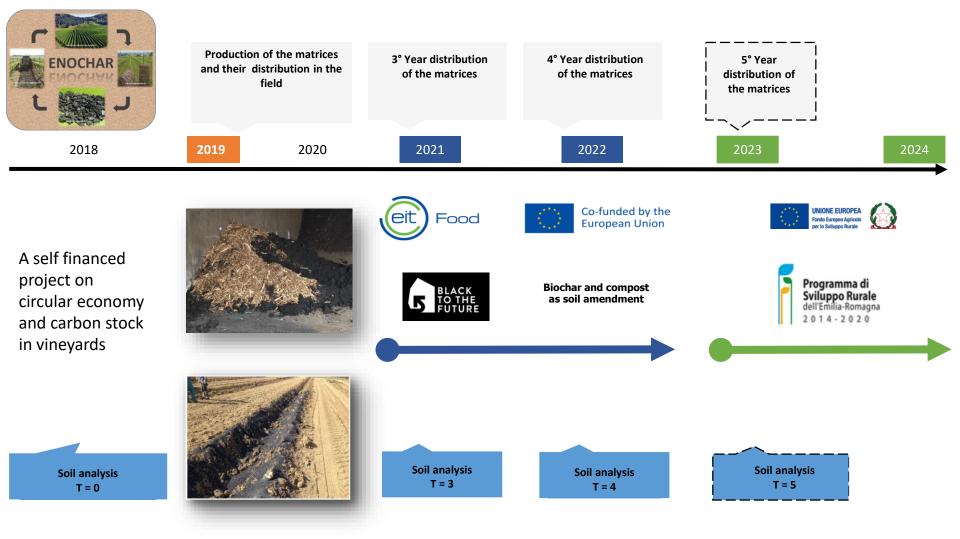
1

Co-funded by the European Union

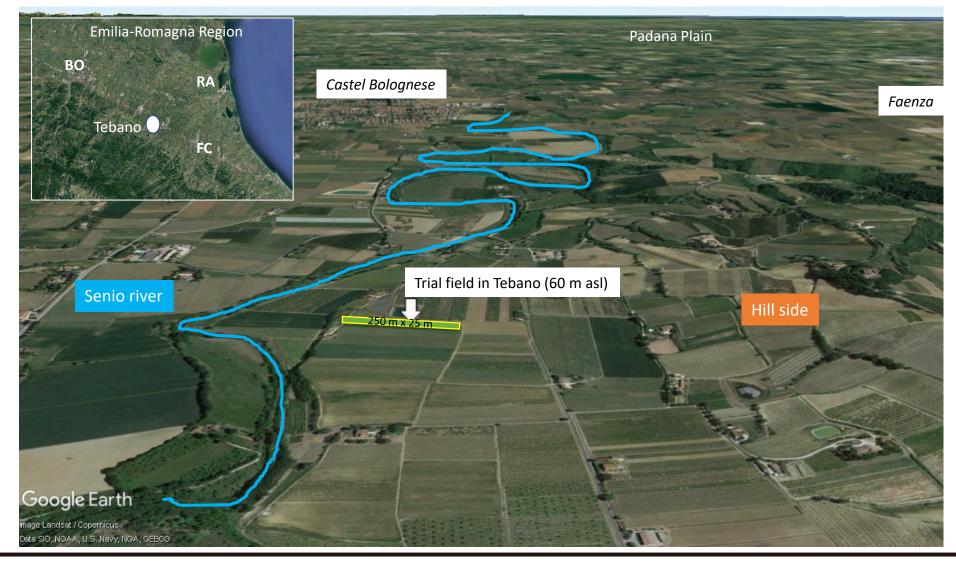
https://blacktothefuture.eu/

Introduction

- Need to reduce GHGs
- Soils are loosing SOM
- Increasing price of fertilizers
- Biomasses as amendments
- Increase of carbon stock
- Circular economy principles
- Trials in Tebano (RA)



From ENOCHAR to BLACK TO THE FUTURE to PSR 2014-2020



REGIONE LAZIO

The trial site

The soils of the trial field have some differences because of their morphological position and age

Younger soil, less leached

Haplic Calcisols (WRB, 2007)

- Slightly coarser texture (S 42%; L 40%; A 18%)
- Presence of lime (CaCO₃ 6%)
- Sub-alkaline pH (8.11)
- Low OM (1.43%) and Ntot (0.098%)

Older soil, more leached

Fluvic Cambisols (Colluvic) (WRB, 2007)

- Slightly finer texture (S 31%; L 47%; A 22%)
- Absence of lime (CaCO₃ 0%)
- Neutral pH (7.14)
- Low OM (1.65%) and Ntot (0.112%)

Analysis at T=0 (Oct. 2018) by Cicognani Labs.

PROGETTO COFINANZIATO DALL'UNIONE EUROPEA - POR FESR 2014-2020

The tested amendment (average values)

Parameters	Units	Compost (ACFA)	Biochar	CBmix (10:3)
Moisture (105°)	%	30	20	39
рН (1:10)		7.4	10.01	7.6
C tot	% s.s.	30	73.4	34
N tot	% s.s.	2.5	1.13	2
C/N ratio		12	65	24
EC (1:10)	mS/cm	2.5	3.4	2.8
P tot (as P_2O_5)	% s.s.	6.9	0.50	2.4
K tot (as K ₂ O)	% s.s.	1.4	2.28	2.5

(Analysis from EMC Innovation Lab and CSA Lab)

Treatments

The **BTF project** involves 4 theses replicated 3 times, for a total of 12 plots.

Each plot consist of 15 plants and is 15 m long.

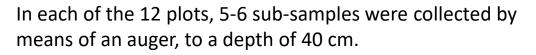
Treatment	Quantity t/ha (d.m.)	Plots	
BIOCHAR	20	1-2-3	
CBmix	10 Compost + 3 Biochar	4-5-6	
COMPOST	10	7-8-9	
NOT TREATED	-	10-11-12	

Fertilization with ternary compound fertilizer (12-8-16) at a dose of 30 units N, 20 units P and 40 units K.

BTF project - Trial field and plots distribution in the randomized-block design.

Cultivar: SAUVIGNON KRETOS

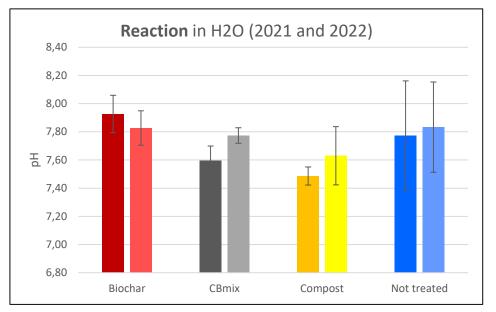
Trellis system: GUYOT (2.6 m x 1.0 m)



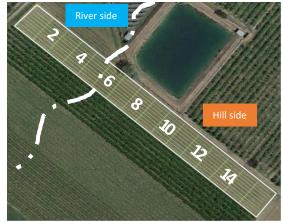
PROGETTO COFINANZIATO DALL'UNIONE EUROPEA - POR FESR 2014-2020

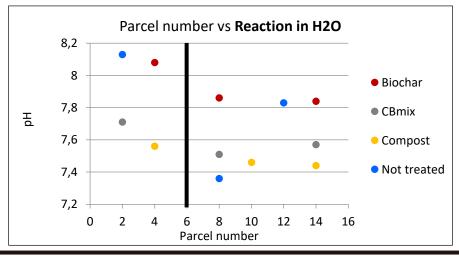
Soil sampling on 25/08/2021 and 29/08/2022

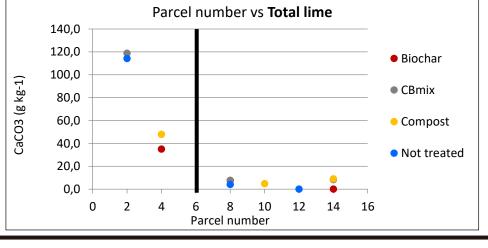
The bulk material was homogenized and quartered.


Chemical analysis

- 1: **pH** in water soil suspension with soil:water ratio = 1:2.5
- 2: Total lime by volumetric method
- 3: Electrical Conductivity in water soil suspension with soil:water ratio = 1:2.5
- 4: Total Organic Carbon by Elemental Analyzer
- 5: Total Nitrogen by Elemental Analyzer
- 6: Available P (Olsen method)
- 7: Cation Exchange Capacity (BaCl₂ solution buffered at pH 8.2)
- 8 : Exchangeable Ca²⁺, Mg²⁺, Na⁺, K⁺ (ICP-OES)
- 9: Soluble cations Ca²⁺, Mg²⁺, Na⁺, K⁺ (ICP-OES)
- 10: **Soluble anions** HCO₃⁻, Cl⁻, NO₃⁻, SO₄²⁻, PO₄³⁻, F⁻, Br⁻ by ionic chromatography (IC)

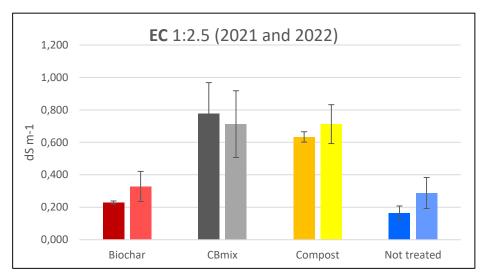


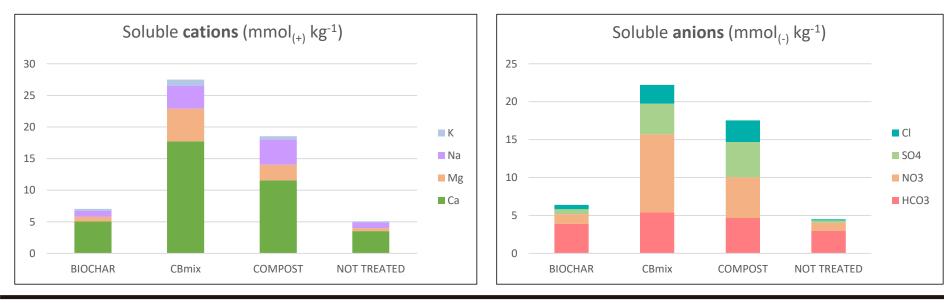




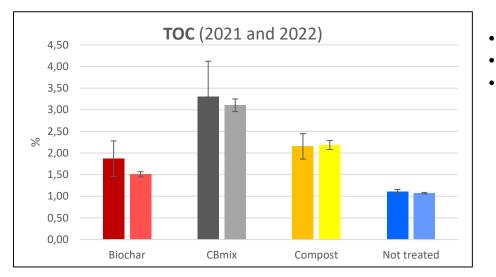
- Biochar slightly increases the pH
- CBmix and Compost slightly decrease the pH
- Large variability
- Influence of soil diversity

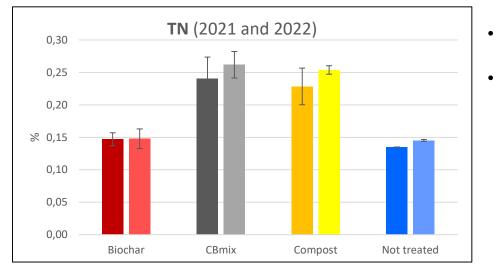
Parcel number

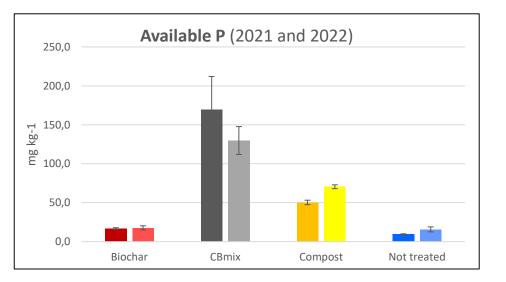




PROGETTO COFINANZIATO DALL'UNIONE EUROPEA - POR FESR 2014-2020

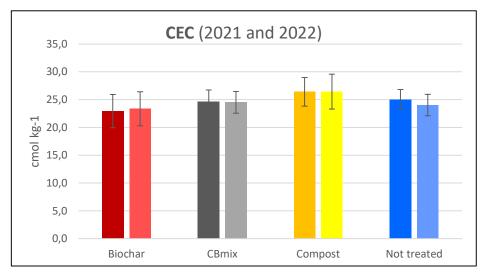

- **CBmix** and **Compost** slightly increase the EC
- Biochar has no effect


- **CBmix** and **Compost** increase cations soluble forms
- Biochar has little effect
- CBmix and Compost increase anions soluble forms
- Biochar has little effect

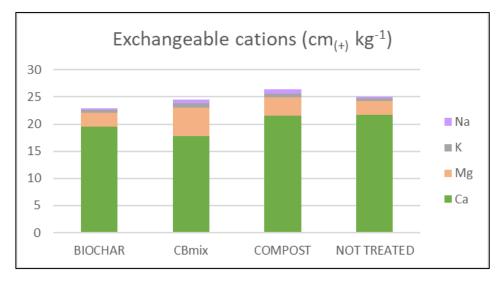

- **CBmix** significantly increases the TOC (approx. 3x)
- **Compost** significantly increases the TOC (approx. 2x) ٠
- **Biochar** increases the TOC ٠

- CBmix and Compost significantly increase the TN (approx. 2x)
- Biochar has no effect on the TN ٠

Available K (2021 and 2022) 500,0 450,0 400,0 350,0 7,300,0 200,0 150,0 100,0 50,0 0,0 Biochar CBmix Compost Not treated

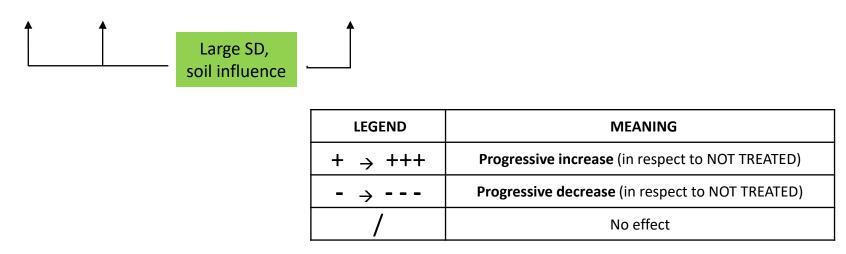

- **CBmix** significantly increases the available P (approx. 17x) but with large SD
- **Compost** increases the available P (approx. x5)
- Biochar has little effect on the available P

- **CBmix** significantly increases the available K (approx. 2x)
- **Compost** and **Biochar** increase the available K



- All treatments effect moderately the CSC
- Biochar slightly decreases CEC
- There is also a slight effect linked to soil (i.e., SOM, texture)

 Cation aboundance is, for all treatments, Ca > Mg > K > Na except for Compost in which Na > K



Summary of results

									S	olubl	e bas	es	Soluble allions				
Treatment	рН	EC	Lime	тос	ΤN	P avail	K avail	CEC	Ca ²⁺	Mg ²⁺	K⁺	Na⁺	HCO3-	Cl-	NO ₃ -	SO ₄ ²⁻	
COMPOST	-	+	-	++	+	++	++	+	++	++	++	++	++	++	+	++	
BIOCHAR	+	-		+	/	+	+	-	+	+	+	/	+	+	/	+	
CBmix	-	+	+	+++	+	+++	+++	-	++	++	+++	++	++	++	++	++	

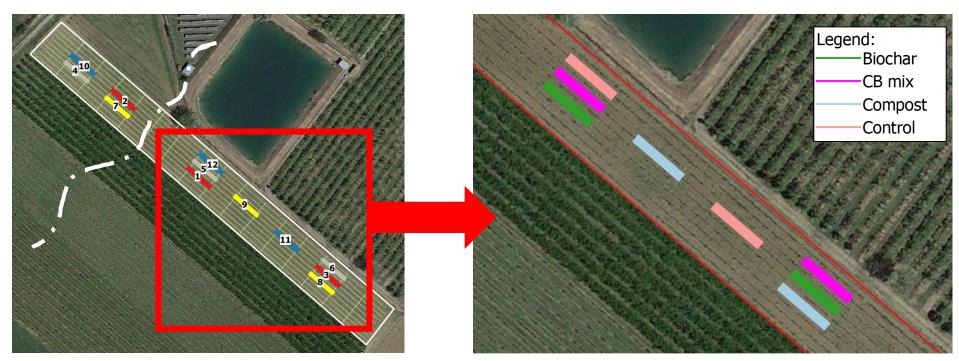
- All treatments increase TOC, TN, P, K content with the order CBmix > Compost > Biochar
- Results regarding pH, lime and CEC are partially effected by soil characteristics

Soluble anions

Productive parameters at harvest

24- a ab b b + BIOCH. ab b b - CB MIX
THESISBUNCHPRODUCTI-Image: Constraint of the second secon
(g) (kg/plant) 18-
CONTROL 19 152 2.88
COMPOST 18 164 2.93 16
BIOCHAR 19 156 3.01 a^{10^2} a
CB MIX 19 169 3.13

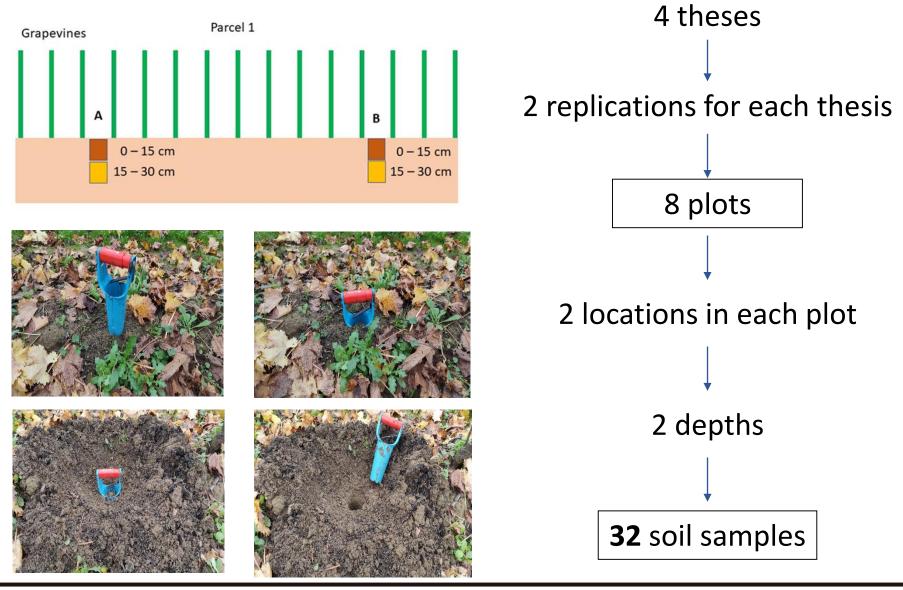
- All thesis performed better than control.
- The **CB MIX** Thesis presented the largest values of Total Soluble Solids and productivity.



Evaluation of the Soil Biological Quality (QBS-ar) based on the adaptation of microarthropods to life in soil (Parisi, 2001)

BTF trial field and plots distribution

QBS trial field and plots distribution



Sampling strategy

PROGETTO COFINANZIATO DALL'UNIONE EUROPEA - POR FESR 2014-2020

REGIONE LAZIO

POR

Estraction

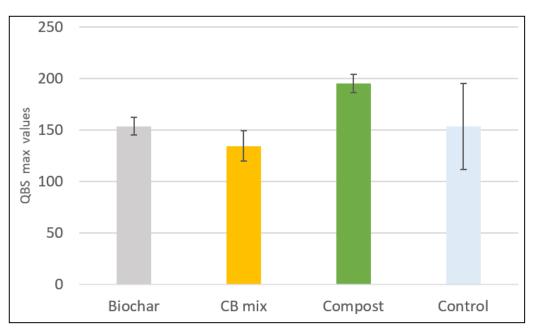
Berlese-Tullgren extraction method

Recognition, classification and counting of soil microarthropods

Ex.:Collembola

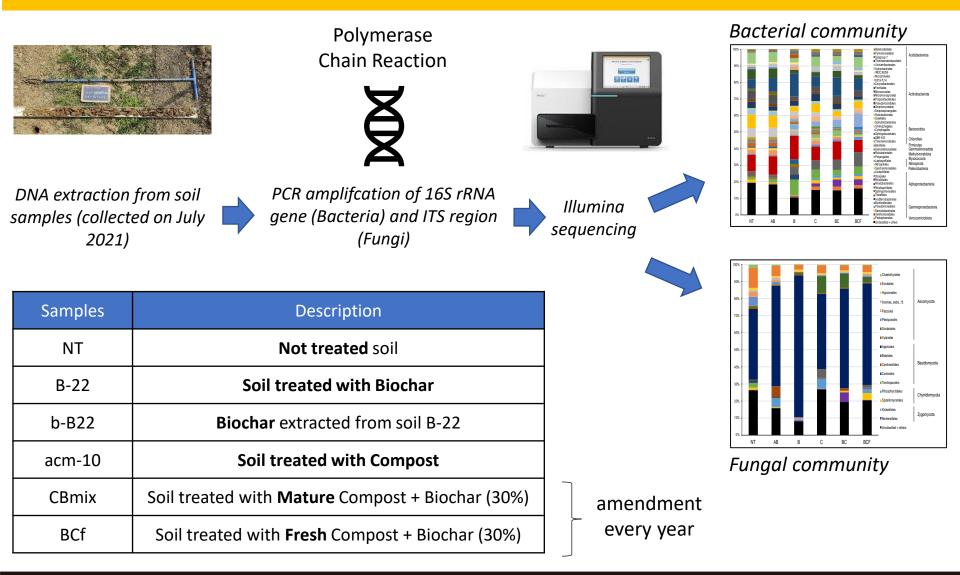
Poorly adapted to life in the soil

Well adapted to life in the soil

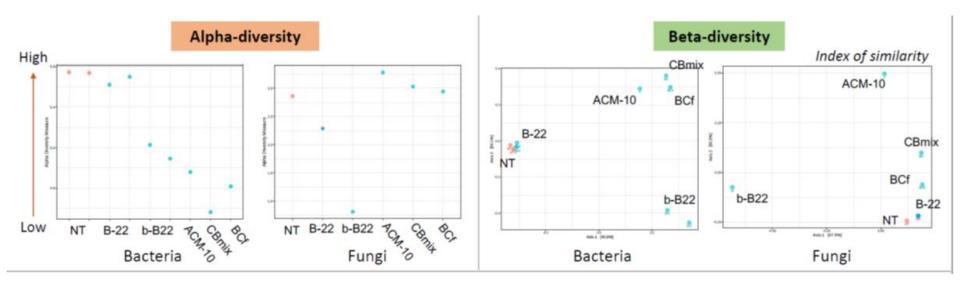


Soil Biological Quality – microarthropods (QBS-ar)

QBS-ar max


QBS-ar max value	Soil Quality
QBS<50	Very bad
50< QBS< 100	Poor
100< QBS< 150	Fair
150< QBS< 200	Good
QBS> 200	Excellent

- All tested biomasses did not alter significantly microarthropods presence
- Little differences between surficial and deep soil samples
- CB mix results in lower QBS than the other tests, albeit fair


Characterization of the soil microbiota after compost and biochar addition: composition of bacteria and fungal communities (Prof.ssa M. Cappelletti)

PROGETTO COFINANZIATO DALL'UNIONE EUROPEA - POR FESR 2014-2020

REGIONE

- Addition of compost (both mature and fresh):
 - DECREASES the **bacterial diversity** and INCREASES the **fungal diversity** in soils
 - STRONGLY INFLUENCES the bacterial and fungal community composition (C, BC and BCF ≠ NT)
- Addition of **biochar** does not strongly influence the diversity and composition of microbial community in soils (as compared to compost) (both fungi and bacteria)
- Microbial community adhered on the only biochar (b-B22) significantly differs from all the other samples

Conclusions

Soil

- All treatments increase TOC, TN, P, K, EC with the order **CBmix** > **Compost** > **Biochar**
- Some differences seem linked to soil charateristics

Grape

All treatments increase total soluble solids and productivity

QBS-ar

- All tested biomasses did not alter significantly microarthropods presence
- CBmix results in lower QBS than the other tests, albeit fair

Soil microbiota

- Compost strongly influences the bacterial and fungal diversity and community composition
- **Biochar** does not strongly influence the diversity and composition of microbial community

The future

- There is a need of long term experiment because changes in soil properties are slow (Long Term Experiment Platform – LTPE)
- A RER rural development program (PSR) project has been financed to continue the experiment
- QBS-ar will performed again
- A model for Carbon turnover (ROTHAMSTED CARBON MODEL RothC) will be applied
- LCA analysis will be also performed
- Study on aged biochar are on going
- Study on functionalization of biochar (magnetic) for different purposes
- Study on the remediation of polluted soil

Alessandro Buscaroli

Biological, Geological and Environmental Sciences Department (BiGeA) Alma Mater Studiorum - Bologna University Via Sant'Alberto, 163 48123 Ravenna - Italia tel. +39 0544 937310 alessandro.buscaroli@unibo.it

